Assimilation of Satellite Precipitation and Soil Moisture Data into the WRF-Noah Model

Rafael L. Bras¹, Liao-Fan Lin¹, Ardeshir M. Ebtehaj², Alexandro N. Flores³, and Satish Bastola¹

¹School of Civil and Environmental Engineering, Georgia Institute of Technology ²Department of Civil, Environmental, and Geo-Engineering, University of Minnesota ³Geosciences Department, Boise State University

Outline

- Research Background and Motivations
- Joint Data Assimilation System and Experiment Setup
- Evaluation of Precipitation Analyses and Forecasts
- Evaluation of Soil Moisture
- Summary and Future Work

 Atmospheric and land surface data assimilation have been developed separately for a long time

Research Background and Motivations

 Atmospheric and land surface data assimilation have been developed separately for a long time

Research Background and Motivations

 Atmospheric and land surface data assimilation have been developed separately for a long time

- Atmospheric Data Assimilation System:
 - Using mostly variational data assimilation
 - Fixing land surface states during the analysis procedure

- Land Surface Data Assimilation System:
 - Using mostly ensemble-based filtering
 - Updating only land surface states in the analysis procedure

Research Background and Motivations

Background

- Atmospheric and land surface data assimilation have been developed separately for a long time
- The available data assimilation systems do not allow us to study the relative impact of remotely-sensed precipitation and soil moisture (two of the most important variables in hydrologic cycles) on short-term precipitation and soil moisture predictions.

Background

- Atmospheric and land surface data assimilation have been developed separately for a long time
- The available data assimilation systems do not allow us to study the relative impact of remotely-sensed precipitation and soil moisture (two of the most important variables in hydrologic cycles) on short-term precipitation and soil moisture predictions.
 - Precipitation: TRMM, GPM
 - Soil Moisture: SMOS, AMSR-E, SMAP

Joint Data Assimilation System

- The coupled WRF-Noah model
- Similar data assimilation approaches for both atmospheric and soil moisture states:
 - Variational data assimilation scheme
 - National Meteorological Center (NMC) method for estimating the background error covariance

Joint Data Assimilation System

- The coupled WRF-Noah model
- Similar data assimilation approaches for both atmospheric and soil moisture states:
 - Variational data assimilation scheme
 - National Meteorological Center (NMC) method for estimating the background error covariance

Joint Data Assimilation System

- The coupled WRF-Noah model
- Similar data assimilation approaches for both atmospheric and soil moisture states:
 - Variational data assimilation scheme
 - National Meteorological Center (NMC) method for estimating the background error covariance

Experiment Setup

- Experiment duration: July 1-29, 2013
- Experiments:
 - OL: no data assimilation
 - PrDA: assimilation of six-hour TMPA 3B42 precipitation data
 - PrSMDA: assimilation of six-hour TMPA 3B42 precipitation and orbital SMOS soil moisture data

$$ETS = \frac{a - a_r}{a + b + c - a_r}$$

 $FAR = \frac{b}{a+b}$

 $BS = \frac{a+b}{a+c}$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} hits & falsealarms \\ misses & noforecasts \end{bmatrix}$$

$$a_r = \frac{(a+b)(a+c)}{n}$$

Score of the Precipitation Analyses (Different Times)

Statistics of Precipitation Forecasts

32 -106

-104

SCAN 2072 **CRN NE Harrison 20SSE** CRN NE Whitman 5ENE SCAN 2068 CRN NE Lincoln 8ENE 42 •CRN IA Des Moines 17I **SCAN 2017** SCAN 2001 **CRN NE Lincoln 11SW SCAN 2047** 40 SCAN 2093 SCAN 2094 CRN MO Chillicothe 22 SCAN 2147 **CRN KS Oakley 19SSW** SCAN 2061 CRN MO Joplin 24N 38 SCAN 2092 SCAN 2194 CRN OK Goodwell 2SE CRN OK Stillwater 5WNW 36 SCAN 2006 CRN TX Muleshoe 19S 34

-98

-96

-94

-92

- -100 SCAN: Soil Climate Analysis Network
- CRN: Climate Reference Network

SCAN 2105 SCAN 2107 **SCAN 2108**

-102

Statistics of Hourly Top 10-cm Soil Moisture Comparison

Experiment\Improvement in	Bias	MAE	RMSE	Corr
PrDA	16%	9%	8%	-1%
PrSMDA	71%	34%	30%	21%

Statistics of Hourly 10-to-40-cm Soil Moisture Comparison

Experiment\Improvement in	Bias	MAE	RMSE	Corr
PrDA	56%	5%	3%	-23%
PrSMDA	-21%	-2%	-6%	-12%

Selected Time Series

OL
PrDA
PrSMDA
SCAN Obs.
SMOS Obs.

Summary and Future Directions

Summary

- Assimilation of TMPA 3B42 precipitation improves precipitation analyses significantly but its benefit drops quickly beyond the assimilation window.
- Assimilation of SMOS soil moisture has only marginal effect on precipitation analyses/forecasts.
- Both precipitation and soil moisture data assimilation can reduce surface soil moisture simulations, while has small to negative impact on lower layer soil moisture simulations.

Summary and Future Directions

Summary

Background

- Assimilation of TMPA 3B42 precipitation improves precipitation analyses significantly but its benefit drops quickly beyond the assimilation window.
- Assimilation of SMOS soil moisture has only marginal effect on precipitation analyses/forecasts.
- Both precipitation and soil moisture data assimilation can reduce surface soil moisture simulations, while has small to negative impact on lower layer soil moisture simulations.

Future Directions

- Bias characterization of satellite and model soil moisture data
- Assimilation of IMERG precipitation and SMAP soil moisture
- Assimilation of radiance observations from GPM constellation

Thank you!

Acknowledgments

- Fundings from NASA PMM and the K. Harrison Brown Family Chair
- Data and models from NCAR, NASA, USDA, NOAA, and SMOS Barcelona Expert Centre